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Boltzmann relaxation dynamics in the strongly interacting Fermi-Hubbard model
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Via the hierarchy of correlations, we study the Mott insulator phase of the Fermi-Hubbard model in the limit
of strong interactions and derive a quantum Boltzmann equation describing its relaxation dynamics. In stark
contrast to the weakly interacting case, we find that the scattering cross sections strongly depend on the momenta
of the colliding quasiparticles and holes. Therefore, the relaxation towards equilibrium crucially depends on the
spectrum of excitations. For example, for particle-hole excitations directly at the minimum of the (direct) Mott
gap, the scattering cross sections vanish such that these excitations can have a very long lifetime.
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I. INTRODUCTION

The laws of thermodynamics are very powerful tools in
physics with far reaching consequences. However, under-
standing the microscopic origin of thermal behavior can be
a very challenging question, which is also the origin of the
famous debate between Loschmidt and Boltzmann [1–3]. For
classical many-body systems, the relaxation to a thermal equi-
librium state is typically understood in terms of an effective
description in the form of a Boltzmann equation [4]. When
and where such an effective description is adequate can still be
a nontrivial question [5–12], related to the BBGKY hierarchy
[13–15] and chaotic versus integrable behavior.

For quantum many-body systems, the question of whether
and how these systems relax to a thermal equilibrium state
can be even more involved and is being widely discussed in
the literature; see, e.g., [9,16–24]. For example, the interplay
between disorder and interactions can have a nontrivial impact
on the relaxation dynamics; see, e.g., [25–27]. In the fol-
lowing, we focus on closed quantum lattice systems without
disorder and dissipation, whose unitary dynamics describes
thermalization induced by the intrinsic interactions. Still, their
relaxation and thermalization dynamics can show nontrivial
features, e.g., it can undergo several stages with different time
scales; see, e.g., [28–30].

The thermalization of weakly interacting quantum many-
body systems is typically understood in terms of a quantum
version of the Boltzmann equation, derived by means of
suitable approximation schemes such as the Born-Markov
approximation [31,32]. Once such a Boltzmann equation is
obtained, it allows us to address several questions. For ex-
ample, it often implies an H theorem indicating irreversibil-
ity. The structure of the Boltzmann equation also indicates
the nature of the relevant quasiparticles, their energies, and
their distribution functions. It shows whether they are of
bosonic or fermionic (or another) character, and thus whether
they approach a Bose-Einstein or Fermi-Dirac distribution
in thermal equilibrium. Finally, the collision terms in the
Boltzmann equation correspond to the differential scattering
cross sections of these quasiparticles.

For strong interactions, however, we are just beginning
to understand whether and how these systems thermalize.
Important questions in this context include the following.

(i) What is the nature of the relevant quasiparticle exci-
tations (e.g., their distribution function)? (ii) How do they
propagate (i.e., their energy-momentum relation)? (iii) How
do they interact (i.e., their collision terms)?

There are several investigations for one-dimensional sys-
tems; see, e.g., [33–39]. However, due to energy and mo-
mentum conservation and potential further conservation laws
(chaotic versus integrable behavior), the relaxation dynamics
in one dimension displays peculiar features and is qualita-
tively different from that in higher dimensions. Thus, these
one-dimensional systems are of limited help for understand-
ing higher dimensional cases.

II. THE MODEL

In order to start filling this gap, we consider the Fermi-
Hubbard Hamiltonian as a prototypical model for strongly
interacting fermions which move on a regular lattice given
by the hopping matrix Jμν and repel each other via the local
interaction U ,

Ĥ = − 1

Z

∑
μ,ν,s

Jμν ĉ†
μ,sĉν,s + U

∑
μ

n̂↑
μn̂↓

μ. (1)

As usual, ĉ†
μ,s and ĉν,s are the fermionic creation and anni-

hilation operators for the lattice sites μ and ν and the spin
s ∈ {↑,↓} with the corresponding number operators n̂s

μ =
ĉ†
μ,sĉμ,s. Furthermore, Z denotes the coordination number of

the translationally invariant lattice, i.e., the number of nearest
neighbors.

In one spatial dimension, the Fermi-Hubbard Hamiltonian
(1) is integrable via the Bethe ansatz [40] and thus would
not display full thermalization in view of the infinite number
of conserved quantities (in addition to the impossibility of
thermalization via two-body collisions due to energy and
momentum conservation, as mentioned in the Introduction).
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Thus, we focus on higher-dimensional lattices (with large Z)
in the following.

In the limit of small interactions U , the ground state of
(1) can be described by a Fermi gas and is thus metallic for
0 < 〈n̂s

μ〉 < 1. For large interactions U , however, the structure
of the ground state changes. Assuming half filling 〈n̂s

μ〉 = 1/2,
the repulsion U generates a gap and we obtain the Mott
insulator state containing one fermion per site (plus virtual
tunneling corrections); cf. [41,42].

III. HIERARCHY OF CORRELATIONS

For weak interactions U , a perturbative expansion in U
allows us to simplify the equations of motion and to justify
the Markov approximation (see Appendix A). For strong
interactions U , however, this procedure is no longer applicable
and thus one has to find an alternative approach.

Here, we employ the hierarchy of correlations [43–49] and
consider the reduced density matrices ρ̂μ for one site and ρ̂μν

for two sites, etc. After splitting off the correlations via ρ̂corr
μν =

ρ̂μν − ρ̂μρ̂ν and so on, we obtain the following hierarchy of
evolution equations [43]:

∂t ρ̂μ = f1
(
ρ̂ν, ρ̂

corr
μν

)
, (2)

∂t ρ̂
corr
μν = f2

(
ρ̂ν, ρ̂

corr
μν , ρ̂corr

μνσ

)
, (3)

∂t ρ̂
corr
μνσ = f3

(
ρ̂ν, ρ̂

corr
μν , ρ̂corr

μνσ , ρ̂corr
μνσλ

)
, (4)

∂t ρ̂
corr
μνσλ = f4

(
ρ̂ν, ρ̂

corr
μν , ρ̂corr

μνσ , ρ̂corr
μνσλ, ρ̂

corr
μνσλζ

)
, (5)

and in complete analogy for the higher correlators. The
functions f1,2,3,... are derived from the Heisenberg equations
of motion and translate to the differential equations for the
various correlation functions; see Eqs. (B10), (B11), (B32),
(B36), (B39), and (B55) in Appendix B.

In order to truncate this infinite set of recursive equations,
we exploit the hierarchy of correlations in the formal limit of
large coordination numbers Z → ∞. Expanding the quanti-
ties into powers of 1/Z , it can be shown [43] that the two-site
correlations are suppressed via ρ̂corr

μν = O(1/Z ) in comparison
to the on-site density matrix ρ̂μ = O(Z0). Furthermore, the
three-site correlators are suppressed even stronger via ρ̂corr

μνσ =
O(1/Z2), and so on. As an intuitive picture, a lattice site has to
“share” its correlations equally with all Z neighboring lattice
sites (and even more lattice sites if we go to larger distances)
such that the two-point correlation between a given pair of
lattice sites must be small O(1/Z ). In the absence of effects
such as symmetry breaking, this line of argument is similar to
the well-known monogamy of entanglement; see also [50].

This hierarchy of correlations facilitates the following it-
erative approximation scheme: To zeroth order in 1/Z , we
may approximate (2) via ∂t ρ̂μ ≈ f1(ρ̂ν, 0) which yields the
mean-field solution ρ̂0

μ. As the next step, we may insert this
solution ρ̂0

μ into (3) and obtain to first order in 1/Z the approx-
imation ∂t ρ̂

corr
μν ≈ f2(ρ̂0

ν , ρ̂
corr
μν , 0) which gives a set of linear

and inhomogeneous equations for the two-point correlations
ρ̂corr

μν . From this set, we obtain the quasiparticle excitations and
their energies.

Since this set ∂t ρ̂
corr
μν ≈ f2(ρ̂0

ν , ρ̂
corr
μν , 0) of equations is lin-

ear in ρ̂corr
μν , it does not describe interactions between the

quasiparticles and hence we do not obtain a Boltzmann col-
lision term to first order in 1/Z . To this end, we have to go
to higher orders in 1/Z and study the impact of the three-
point correlators ρ̂corr

μνσ in (3). As one might already expect
from the well-known derivation for weak interactions (see
Appendix A), it is not sufficient to truncate the set of Eqs. (2)–
(5) at this stage—we have to include the four-point correlators
in order to derive the Boltzmann equation (see below).

Finally, the back-reaction of the quasiparticle fluctuations
onto the mean field ρ̂μ can be derived by inserting the solution
for ρ̂corr

μν back into Eq. (2).

IV. MOTT INSULATOR STATE

As explained above, the starting point of the hierarchy is
the on-site density matrix ρ̂μ or its zeroth-order (mean-field)
approximation ρ̂0

μ. Assuming a spatially homogeneous state at
half filling [51], we get the simple solution of Eq. (2):

ρ̂μ = (
1
2 − D

)
(|↑〉〈↑| + |↓〉〈↓|) + D(|↑↓〉〈↑↓| + |0〉〈0|),

(6)

where D denotes the double occupancy and measures the
deviation from the ideal Mott insulator state for U 
 J .

Now we may insert this solution into Eq. (3) and study
the two-point correlations. In order to describe the relevant
correlators describing the dynamics of the quasiparticles (also
called doublons) and holes (or holons), we introduce the short-
hand notation N̂X

μ,s which is just n̂μ,s for X = 1 but 1 − n̂μ,s

for X = 0 [see Eq. (B1)]. Then we may define the uppercase
operators via

ĈX
μ,s = ĉμ,sN̂

X
μ,s̄, (7)

where s̄ is the spin index opposite to s. For X = 1, they
correspond to the annihilation of a fermion with spin s at the
lattice site μ when there is another fermion with opposite
spin s̄ at that site. Thus, this case X = 1 corresponds to a
quasiparticle (doublon) excitation. In analogy, the case X = 0
corresponds to the absence of another fermion with opposite
spin s̄ at that site, i.e., a hole (holon) excitation.

In terms of these operators (7), the quasiparticle and hole
correlators can be written as

f XY
μν,s = 〈(

ĈX
μ,s

)†
ĈY

ν,s

〉 =
∫

k
f XY
k,s exp{ik · �rμν}, (8)

where �rμν = rμ − rν denotes the difference between the
positions rμ and rν of the lattice sites μ and ν. Here, we have
assumed spatial homogeneity.

As a result, we cannot describe situations (e.g., diffu-
sion) where spatial dependencies are important with Eq. (8).
However, as long as the spatial dependence does not invali-
date the hierarchy of correlations, our approach can also be
generalized to inhomogeneous scenarios such as diffusion.
For inhomogeneous excitations, the two-site correlation func-
tions which enter the Boltzmann equation would acquire an
additional position coordinate, i.e., f XY (k, r, s) instead of
f XY (k, s). Then, the Boltzmann equation would also con-
tain terms ∂ f XY (k, r, s)/∂r describing the propagation of
the excitations. However, here we are mainly interested in
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the collision terms in the Boltzmann equation and hence we
assume spatial homogeneity for simplicity.

V. DISPERSION RELATION

In terms of the f XY
k,s , the evolution equation for the two-

point correlators (8) obtained from Eq. (3) reads

i∂t f XY
k,s = U (Y − X ) f XY

k,s + Jk

2

∑
Z

(
f ZY
k,s − f XZ

k,s

) + SXY
k,s , (9)

where the source term SXY
k,s given explicitly in Eq. (B11)

contains the three-point correlators and is suppressed as 1/Z2.
Apart from this source term, the set of Eq. (9) is linear and
can be diagonalized by means of an orthogonal 2 × 2 trans-
formation matrix Oa

X (k); see Eqs. (B19)–(B23). We denote
the transformed (rotated) correlation functions by lowercase
superscripts via f ab

k,s = 2
∑

XY Oa
X (k)Ob

Y (k) f XY
k . Thus, the set

of Eq. (9) simplifies to

i∂t f ab
k,s = (

Eb
k − Ea

k

)
f ab
k,s + 2Sab

k,s, (10)

with the quasiparticle (a = +) and hole (a = −) energies
[52],

E±
k = 1

2

(
U − Jk ±

√
J2

k + U 2
)
. (11)

The functions f ab
k,s are rapidly oscillating for a �= b but slowly

varying for a = b because of SXY
k,s = O(1/Z2). Thus, the 1/Z

expansion (hierarchy of correlations) employed here naturally
provides a separation of time scales: We have rapidly varying
quantities whose rate of change is given by the eigenenergies
(11) or linear combinations thereof, while the rate of change of
the slowly varying quantities is suppressed with 1/Z (or even
higher). As in the weakly interacting case, this separation of
time scales will be used to justify the Markov approximation.

In the (Mott insulating) ground state, these corre-
lation functions f XY

k,s assume the values f 01
k,s = f 10

k,s =
Jk/(4

√
U 2 + J2

k ), f 00
k,s = 1/4 + U/(4

√
U 2 + J2

k ) − D, and

f 11
k,s = 1/4 − U/(4

√
U 2 + J2

k ) + D; see, e.g., [49]. Hence any
deviation from these values indicates a departure from the
ground state, i.e., an excitation. As a result, the correlation
functions f ab

k,s determine the excitations present in our system.
Accordingly, we denote the slowly varying quantities f a=b

k,s as
our quasiparticle distribution functions for (a = b = +) with
f +
k,s and the hole distribution function for (a = b = −) with

f −
k,s.

Again, the separation of time scales can be understood in
terms of an intuitive picture: The eigenenergies (11) scale
with O(Z0) and thus are not suppressed for large Z . On the
one hand, the on-site repulsion U is obviously independent of
Z . On the other hand, the hopping rate to each neighboring
lattice site is small, but this is compensated by the large
number Z of neighbors, such that the hopping terms Jk in
(11) do also contribute at leading order O(Z0). Consistently,
those quantities whose relative rates of change (characteristic
frequency scales) are set by the eigenenergies (11) or linear
combinations thereof are rapidly oscillating.

In contrast, the relative rate of change of the slowly vary-
ing quantities is suppressed by O(1/Z ) or even more. For
example, the time derivatives of the distribution functions

f ±
k,s = O(1/Z ) are given by the source terms Sab

k,s = O(1/Z2)
in (10). As one important contribution, these source terms
contain the interaction between two doublons, for example
(see below). Since two doublons cannot occupy the same
lattice site, they cannot interact directly via the on-site re-
pulsion U . Thus, they can only interact indirectly via virtual
tunneling processes. However, one doublon colliding with
another doublon only experiences a change in one out of the
Z neighboring lattice sites, such that this interaction strength
is suppressed via 1/Z or even more.

VI. HIGHER CORRELATIONS

As shown above, the rate of change of f a=b
k,s is determined

by the source term Sab
k,s containing the three-point correlation

functions:

〈
N̂X

ρ,s̄

(
ĈY

μ,s

)†
ĈZ

ν,s

〉corr =
∫

p,q
GXY Z

pq,s̄sse
ip·�rμρ+iq·�rνρ , (12)

〈
ĉ†
ρ,sĉρ,s̄

(
ĈX

μ,s̄

)†
ĈY

ν,s

〉corr =
∫

p,q
IXY
pq,s̄se

ip·�rμρ+iq·�rνρ , (13)

〈
ĉ†
ρ,sĉ

†
ρ,s̄Ĉ

X
μ,s̄Ĉ

Y
ν,s

〉corr =
∫

p,q
HXY

pq,s̄se
ip·�rμρ+iq·�rνρ , (14)

which are of order 1/Z2. The evolution equations for these
correlators (12)–(14) can be derived from Eq. (4) and read
after the rotation with Oa

X (k) into particle-hole space [see
Eqs. (B34)–(B41)]:

i∂t G
Xab
pq,s̄ss = (

Eb
q − Ea

p

)
GXab

pq,s̄ss + SG,Xab
pq,s̄ss , (15)

i∂t I
ab
pq,s̄s = (

Eb
q − Ea

p

)
Iab
pq,s̄s + SI,ab

pq,s̄s. (16)

i∂t H
ab
pq,s̄s = (

Ea
p + Eb

q − U
)
Hab

pq,s̄s + SH,ab
pq,s̄s. (17)

The source terms SG,Xab
pq,s̄ss , SH,ab

pq,s̄s, and SI,ab
pq,s̄s in the above

equations (15)–(17) contain various combinations of two-
point correlators and the four-point correlators which are
indispensable for the Boltzmann collision terms:〈(

ĈX
α,s̄

)†
ĈY

β,s̄

(
ĈV

μ,s

)†
ĈW

ν,s

〉corr

=
∫

p,q,k
JXYVW

pqk,s̄s̄sse
ip·�rβα+iq·�rμα+ik·�rνα . (18)

Finally, their evolution equation can be derived from Eq. (5).
After a rotation with Oa

X (k) into particle-hole space, we find
[see Eq. (B57)]

i∂t J
abcd
pqk,s̄s̄ss = (−Ea

k+q+p + Eb
k − Ec

q + Ed
k

)
Jabcd

pqk,s̄s̄ss

+ Sabcd
pqk,s̄s̄ss, (19)

where the source term Sabcd
pqk,s̄s̄ss contains three-point and two-

point correlations as well as terms of higher order in 1/Z , such
as the five-point correlator, which we neglect.

VII. MARKOV APPROXIMATION

In order to arrive at a time-local Boltzmann equation,
the differential equations (15), (16), and (19) are integrated
within the Markov approximation. All these equations are of
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the general form i∂tC = �C + S and thus have formally the
solution,

C(t ) = −i
∫ t

−∞
dt ′S(t ′)e−i�(t−t ′ ). (20)

The source terms S containing the distribution functions are
slowly varying. For weak interactions (see Appendix A), the
slowness of the variation is caused by the smallness of the
interaction potential. Obviously, we cannot use this reasoning
for strongly interacting systems—thus we use 1/Z as a small
parameter instead. As explained above in Sec. V, the rapidly
oscillating quantities are characterized by typical frequency
scales of order unity, � = O(Z0), while the relative rate of
change of the slowly varying quantities (e.g., distribution
functions) is suppressed by 1/Z or even stronger.

Hence we may approximate S(t ′) ≈ S(t ) in the above
integral (20) which gives

C(t ) ≈ − S(t )

� − iε
, (21)

with the infinitesimal shift ε > 0 selecting the retarded solu-
tion. As usual, this Markov approximation effectively neglects
memory effects. It allows the elimination of all three-point and
four-point correlators such that finally only the slowly varying
distribution functions remain. After some algebra, we arrive at
[see Eq. (B59)]

∂t f d
k,s = −2π

∫
p,q

∑
a,b,c

Mabcd
p+q,p,k−q,k,s̄s̄ss

× δ
(
Ea

p+q − Eb
p + Ec

k−q − Ed
k

)
× [

f d
k,s f b

p,s̄

(
1 − f c

k−q,s

)(
1 − f a

p+q,s̄

)
− f c

k−q,s f a
p+q,s̄

(
1 − f d

k,s

)(
1 − f b

p,s̄

)]
. (22)

This is the quantum Boltzmann equation and represents our
main result. It has the same general form as in the weakly
interacting case. Let us first discuss the common features. The
Mabcd

p+q,p,k−q,k,s̄s̄ss describe the scattering cross sections for the
various processes. For example, M++++

p+q,p,k−q,k,s̄s̄ss corresponds
to the collision of two quasiparticles with initial momenta
k and p, which are scattered to the final momenta k − q
and p + q, thus satisfying momentum conservation (with the
momentum transfer q). Energy conservation is incorporated
via the Dirac delta function in the second line of Eq. (22). The
last line of Eq. (22) corresponds to the inverse process, which
ensures the conservation of probability.

As another analogy to the weakly interacting case, the
structure of the last two lines of Eq. (22) reflects the fermionic
character of the quasiparticles and holes. (For bosons, one
would have 1 + f d

k,s instead of 1 − f d
k,s.) Related to this

fermionic nature is the particle-hole duality where the dis-
tribution function f +

k,s describing quasiparticles is mapped
to the distribution function 1 − f −

k,s of the holes. Thus, in
addition to 2 → 2 processes such as the collision between two
quasiparticles M++++

p+q,p,k−q,k,s̄s̄ss or two holes M−−−−
p+q,p,k−q,k,s̄s̄ss

or a quasiparticle with a hole M−−++
p+q,p,k−q,k,s̄s̄ss, the above

equation (22) does in principle also contain 1 → 3 processes:
e.g., M+−++

p+q,p,k−q,k,s̄s̄ss corresponds to the inelastic scattering
of one quasiparticle via the simultaneous creation of a new

particle-hole pair (or the inverse process). However, here we
are mainly interested in the strongly interacting limit U 
 J ,
where such processes are forbidden by energy conservation:
The initial particle energy E+

k ≈ U − Jk/2 is not large enough
to create a final state with an energy of nearly 2U .

As the final analogy to the weakly interacting case, we note
that only quasiparticles (or holes) of opposite spins s and s̄
scatter, at least to the leading order considered here. For weak
interactions, this is a simple consequence of the structure of
the on-site interaction term Un̂↑

μn̂↓
μ, but for strong interactions,

the situation is a bit more complex (see below).

VIII. STRONGLY INTERACTING LIMIT

As the most crucial difference to the weakly interacting
case, the scattering cross sections Mabcd

p+q,p,k−q,k,s̄s̄ss acquire a
nontrivial momentum dependence. To illustrate this, let us
consider the limit of strong interactions U 
 J . In this limit,
the Boltzmann equation (22) describing collisions of two
quasiparticles simplifies to

∂t f +
k,s ≈ −2π

∫
p,q

(Jk + Jp)2δ(Jp+q − Jp + Jk−q − Jk ),

[ f +
k,s f +

p,s̄(1 − f +
k−q,s)(1 − f +

p+q,s̄)

− f +
k−q,s f +

p+q,s̄(1 − f +
k,s)(1 − f +

p,s̄)]. (23)

For the collision of two holes, the equation has the same form
after replacing all the f + with f −. The equations describing
the collision of a quasiparticle and a hole have a very similar
structure [see Eqs. (B70) and (B71)].

For weakly interacting systems, the scattering cross section
is momentum independent and given by U 2 [see Eq. (B66)].
Here, we find that the interaction U does not occur in the
Boltzmann equation (23) at all, where the scattering cross
section reads (Jk + Jp)2 and is thus dependent on the mo-
menta k and p of the incoming quasiparticles. This difference
can be understood in terms of the following simplified and
intuitive picture: In the Mott insulator state, all lattice sites
are occupied by one fermion and thus a quasiparticle roughly
corresponds to a doubly occupied lattice site (i.e., a doublon).
As a consequence, two quasiparticles cannot occur at the same
lattice site and thus they cannot directly interact via the strong
on-site repulsion U . Instead, they can “feel” each other via
virtual tunneling processes (as discussed in Sec. V). These
virtual tunneling processes explain the scaling with J2 and the
momentum dependence.

This momentum dependence can have strong implications
for the relaxation dynamics: If we consider a momentum con-
serving excitation process such as a long-wavelength pump
laser, the energy cost of creating a particle-hole pair is given
by the direct gap,

�Ek = E+
k − E−

k =
√

J2
k + U 2, (24)

which assumes its minimum value �Emin
k = U at those points

where Jk vanishes. Now, a weak enough pump laser with
a frequency sufficiently below the gap would predominantly
create excitations near those minimum-energy wave numbers
k where Jk = 0. On the other hand, for these quasiparticle
excitations, the scattering cross sections (Jk + Jp)2 in the
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Boltzmann equation (23) vanish and thus they would relax
very slowly. This behavior is also shown by the other channels
(such as particle-hole collisions) in the strongly interacting
limit.

H theorem

As expected from the observation that the Boltzmann
equation (23) has the same general structure as in the weakly
interacting case, there exists an H functional which is nonde-
creasing with time [4]. The entropy functional H has the usual
explicit form,

H (t ) = −
∑
a,s

∫
k

[
f a
k,s(t ) ln f a

k,s(t )

+ (1 − f a
k,s(t )) ln(1 − f a

k,s(t ))
]
. (25)

As a consequence of Eq. (23), this entropy H (t ) becomes
stationary if the quasiparticle excitations adopt the Fermi-
Dirac distribution,

f a
k,s,therm = 1

1 + eβ(Ea
k −μa ) , (26)

where μ± is the chemical potential for the doublons and
holons, respectively. Thus, although the nonequilibrium dy-
namics for strong interactions differs from the weakly inter-
acting case, the populations of quasiparticles and holes will
reach the same thermal distribution.

IX. BACK-REACTION

Finally, via inserting the correlation functions back into
Eq. (2), we may calculate the back-reaction of the quasi-
particle and hole fluctuations onto the mean field ρ̂μ. This
determines the double occupancy in Eq. (6) via

i∂tD =
∑

s

∫
k

Jk
(

f 01
k,s − f 10

k,s

)
. (27)

However, this small double occupancy D = O(1/Z ) does not
affect our leading-order results, such as the scattering cross
sections in the Boltzmann equation (23). In principle, one
could include these back-reaction effects in a self-consistent
manner by solving for D after truncating the hierarchy and
inserting it back into the equations. However, from the explicit
form of the relation (27) we find that the back-reaction is in-
deed negligible for the limit of strong interactions considered
here [see Eq. (B61)].

X. CONCLUSIONS AND OUTLOOK

As a prototypical example for strongly interacting quan-
tum many-body system on a lattice, we consider the Fermi-
Hubbard model (1) in the Mott insulator state. Via the hierar-
chy of correlations, we derive a quantum Boltzmann equation
(22) describing the relaxation dynamics of the quasiparticle
(doublon) and hole (holon) excitations. As the most crucial
difference to the weakly interacting case, we find that the
scattering cross sections display a strong momentum depen-
dence [cf. Eq. (23)], which has profound consequences for
the relaxation dynamics. In analogy to the weakly interacting

case, the Boltzmann equation (23) facilitates the derivation of
an H theorem; cf. Sec. VIII.

Apart from general properties discussed above (such as
the spin and momentum dependence of the scattering cross
sections), one can solve the Boltzmann equation (23) nu-
merically for different initial conditions f a

k,s(t = 0). As one
example, one could study the delayed relaxation dynamics in
dependence of f a

k,s(t = 0), which will be the subject of further
work. Even though this can be a bit demanding numerically,
it is clearly far less challenging than a full solution of the
quantum many-body problem (due to the exponential size
of the Hilbert space). As another option, linearizing around
a given background solution (such as a thermal equilibrium
state), the resulting eigenvalues yield the relaxation times of
the eigenmodes. However, both methods are restricted to a
specific initial or background solution and thus depend on that
choice. Furthermore, by going away from the strong-coupling
limit U 
 J , or by including additional electronic bands, we
can study relaxation induced by the creation of particle-hole
(doublon-holon) pairs; see also the recent experiment [53].

Our method can be generalized to other lattice systems,
such as the Bose-Hubbard model or spin lattices [54,55]. It
can also be used to study higher-order correlators such as the
spin modes in the Fermi-Hubbard model (such as 〈σ̂ x

μσ̂ x
ν 〉corr

with σ̂ x
μ = ĉμ,↑ĉ†

μ,↓/2 + H.c.), which are of bosonic nature.
Considering the extended Fermi-Hubbard model including
long-range Coulomb interactions, one would expect that they
generate additional scattering cross sections in the Boltzmann
equation (23) and thus also influence the relaxation dynamics.

As a final remark, we note that the Boltzmann equation
(23) allows us to read off the scattering cross section of the
collision between two doublons, for example. However, in
complete analogy to the weakly interacting case, it does not
tell us whether the effective interaction is attractive or repul-
sive because the cross section is quadratic in the interaction.
Since the cross sections (Jk + Jp)2 in (23) vanish for certain
momenta, one could even imagine a switching between attrac-
tive and repulsive at those values. This interesting question
will be the subject of further studies.
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APPENDIX A: BOLTZMANN EQUATIONS FOR WEAKLY
INTERACTING FERMIONS

For weakly interacting fermions, the Boltzmann evolution
equation can be derived via time-dependent perturbation the-
ory. The Hamiltonian for interacting fermions reads

Ĥ = − 1

Z

∑
μ,ν,s

Jμνc†
μ,sĉν,s + 1

2Z

∑
μ,ν,s,s′

V ss′
μν n̂μ,sn̂ν,s′ , (A1)

where s and s′ are spin indices and V ss′
μν denotes the interaction

potential. In order to apply perturbation theory, we shall
transform (A1) to Fourier space in order to diagonalize the
kinetic part. Note that the hierarchical expansion starts from
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the atomic limit and the hopping Hamiltonian introduces the
correlation between lattice sites (see below).

The Hamiltonian (A1) has the Fourier representation,

Ĥ = −
∑
k,s

Jkĉ†
k,sĉk,s

+ 1

2N

∑
k,q,p

∑
s,s′

V ss′
k ĉ†

q+k,sĉq,sĉ
†
p−ks′ ĉp,s′ , (A2)

from which one can obtain the equation of motion of the
fermion distribution function nk,s = 〈ĉ†

k,sĉk,s〉, i.e.,

i∂t nk,s = 1

N

∑
q,p

∑
s′

V ss′
q (〈ĉ†

ks,ĉ
†
p,s′ ĉp+q,s′ ĉk−q,s〉corr

−〈ĉ†
k−q,sĉ

†
p+q,s′ ĉp,s′ ĉk,s〉corr ). (A3)

As can be seen from (A3), the dynamics is solely governed by
the correlation functions,

〈ĉ†
p1,sĉ

†
p2,s′ ĉp3,s′ ĉp4,s〉corr

= 〈ĉ†
p1,sĉ

†
p2,s′ ĉp3,s′ ĉp4,s〉

+(δs,s′δp1,p3δp2,p4 − δp1,p4δp2,p3 )np1,snp2,s′ . (A4)

The equation of motion of the correlators (A4) can be in-
tegrated within the Markov approximation. Substituting the
resulting expression into (A3) we arrive at

∂t nk,s = −2π

N2

∑
q,p

δ(Jk + Jp − Jk−q − Jp−q)

×
[∑

s′,s′′
V ss′

q V ss′′
q {nk,snp,s′′ (1 − nk−q,s)(1 − np+q,s′′ )

− nk−q,snp+q,s′′ (1 − nk,s)(1 − np,s′′ )}
− V ss

q V ss
k−p−q{nk,snp,s(1 − nk−q,s)(1 − np+q,s)

− nk−q,snp+q,s(1 − nk,s)(1 − np,s)}
]
. (A5)

APPENDIX B: BOLTZMANN EQUATIONS FOR THE
STRONGLY INTERACTING HUBBARD MODEL

It is clear that for strongly interacting systems, the deriva-
tion of the Boltzmann dynamics cannot be based on an
expansion in powers of the interaction strength between the
electrons. As explained in the paper, we employ therefore a
hierarchical expansion for large coordination numbers Z .

In the following we give a step-by-step derivation of the
Boltzmann kinetic equation (22). We consider the simplest
possible case and assume that the system is always in an
unpolarized state at half filling which is metallic for U � J
and insulating for U 
 J . We demand that the initial state
has σz symmetry, such that the density matrix commutes with∑

μ(n̂μ,↑ − n̂μ,↓) for all times.

1. Operator equations

We introduce a compact notation in order to make the
calculation tractable. Therefore we define the operators,

N̂0
μ,s = 1 − n̂μ,s = 1 − N̂1

μ,s, (B1)

ĈX
μ,s = ĉμ,sN̂

X
μ,s̄, (B2)

where μ denotes the lattice site and s is the spin index. Using
the Heisenberg equations for the Hubbard Hamiltonian (1),
we find

i∂tĈ
†X
μ,s = 1

Z

∑
κ,Y

JμκĈ†Y
κ,sN̂

X
μ,s̄ − U XĈ†X

μ,s

+ (−1)X

Z

∑
κ

Jμκ [ĉ†
μ,sĉμ,s̄ ĉ

†
κ,s̄ + ĉ†

μ,sĉ
†
μ,s̄ ĉκ,s̄], (B3)

and

i∂tĈ
X
μ,s = − 1

Z

∑
κ,Y

JμκĈY
κ,sN̂

X
μ,s̄ + U XĈX

μ,s

− (−1)X

Z

∑
κ

Jμκ [ĉκ,s̄ ĉ
†
μ,s̄ ĉμ,s + ĉ†

κ,s̄ ĉμ,s̄ ĉμ,s], (B4)

with U 0 = 0 and U 1 = U . The operator N̂X
μ,s evolves accord-

ing to

i∂t N̂
X
μ,s = (−1)X

Z

∑
κ,Y,W

Jμκ

[
Ĉ†Y

μ,sĈ
W
κ,s − Ĉ†Y

κ,sĈ
W
μ,s

]
, (B5)

the spin-flip operator satisfies the equation,

i∂t (ĉ
†
μ,sĉμ,s̄) = − 1

Z

∑
κ,Y,W

Jμκ

[
Ĉ†Y

μ,sĈ
W
κ,s̄ − Ĉ†Y

κ,sĈ
W
μ,s̄

]
, (B6)

and the doublon creation (annihilation) operators have the
equation of motion,

i∂t (ĉ
†
μ,sĉ

†
μ,s̄) = 1

Z

∑
κ,Y,W

Jμκ

[
Ĉ†Y

μ,sĈ
†W
κ,s̄ + Ĉ†Y

κ,sĈ
†W
μ,s̄

]
−Uĉ†

μ,sĉ
†
μ,s̄, (B7)

and

i∂t (ĉμ,s̄ ĉμ,s) = − 1

Z

∑
κ,Y,W

Jμκ

[
ĈW

κ,s̄Ĉ
Y
μ,s + ĈW

μ,s̄Ĉ
Y
κ,s

]
+Uĉμ,s̄ ĉμ,s. (B8)

In the following we shall use the above relations to evaluate
the evolution equations of the hierarchical correlation func-
tions.

2. Double occupancy and two-site correlation functions

Due to the σz symmetry, any expectation value which
contains an odd number of creation operators and annihilation
operators for a fixed spin index vanishes identically. This
implies, for example,

〈ĉ†
μ,sĉμ,s̄〉 = 0 or

〈
Ĉ†X

μ,sĈ
Y
ν,s̄

〉corr = 0. (B9)
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The zeroth-order equation of the hierarchical expansion (2) determines the double occupancy 〈N̂1
μ,sN̂

1
μ,s̄〉 = 〈N̂0

μ,sN̂
0
μ,s̄〉 = D, i.e.,

i∂tD = 1

Z

∑
κ,s

Jμκ

[〈
Ĉ†0

μ,sĈ
1
κ,s

〉corr − 〈
Ĉ†1

κ,sĈ
0
μ,s

〉corr]
. (B10)

From the first order Eq. (3) follows the dynamics of the two-point correlation functions,

i∂t 〈Ĉ†X
μ,sĈ

Y
ν,s〉corr

= (UY − U X )
〈
Ĉ†X

μ,sĈ
Y
ν,s

〉corr

+ 1

Z

∑
κ,W

Jμκ

[〈
N̂X

μ,s̄

〉〈
Ĉ†W

κ,s ĈY
ν,s

〉corr + 〈
N̂X

μ,s̄Ĉ
†W
κ,s ĈY

ν,s

〉corr] − 1

Z

∑
κ,W

Jνκ

[〈
N̂Y

ν,s̄

〉〈
Ĉ†X

μ,sĈ
W
κ,s

〉corr + 〈
N̂Y

ν,s̄Ĉ
†X
μ,sĈ

W
κ,s

〉corr]

+ (−1)X 1

Z

∑
κ,W

Jμκ

〈[
ĉ†
μ,sĉμ,s̄Ĉ

†W
κ,s̄ + ĉ†

μ,sĉ
†
μ,s̄Ĉ

W
κ,s̄

]
ĈY

ν,s

〉corr − (−1)Y 1

Z

∑
κ,W

Jνκ

〈
Ĉ†X

μ,s

[
ĈW

κ,s̄ ĉ
†
ν,s̄ ĉν,s + Ĉ†W

κ,s̄ ĉν,s̄ ĉν,s
]〉corr

+ Jμν

Z

[〈
N̂X

μ,s̄

〉〈
N̂1

ν,sN̂
Y
ν,s̄

〉 + 〈
N̂X

μ,s̄N̂
1
ν,sN̂

Y
ν,s̄

〉corr] − Jμν

Z

[〈
N̂Y

ν,s̄

〉〈
N̂1

μ,sN̂
X
μ,s̄

〉 + 〈
N̂Y

ν,s̄N̂
1
μ,sN̂

X
μ,s̄

〉corr]
+ (−1)X Jμν

Z

∑
W

〈[
ĉ†
μ,sĉμ,s̄Ĉ

†W
ν,s̄ + ĉ†

μ,sĉ
†
μ,s̄Ĉ

W
ν,s̄

]
ĈY

ν,s

〉corr − (−1)Y Jμν

Z

∑
W

〈
Ĉ†X

μ,s

[
ĈW

μ,s̄ ĉ
†
ν,s̄ ĉν,s + Ĉ†W

μ,s̄ ĉν,s̄ ĉν,s
]〉corr

− δμν

Z

∑
κ,W

Jμκ

[〈
N̂X

μ,s̄

〉〈
Ĉ†W

κ,s ĈY
μ,s

〉corr − 〈
N̂Y

μ,s̄

〉〈
Ĉ†X

κ,sĈ
W
μ,s

〉corr]
. (B11)

The evolution equation (B11) involves terms of order O(1/Z )
which determine the free dynamics of the quasiparticles. In
this order, each mode evolves independently. The three-point
correlations of order O(1/Z2) couple different modes with
each other and are crucial in the derivation of the Boltzmann
dynamics (see below). In order to represent Eq. (B11) momen-
tum space, we define the Fourier components of the two-point
correlation function and the various three-point correlation
functions to be [cf. Eqs. (8) and (12)–(14)]〈

Ĉ†X
μ,sĈ

Y
ν,s

〉corr = 1

N

∑
k

f XY,corr
k,s eik·�xμν , (B12)

〈
N̂W

μ,tĈ
†X
κ,sĈ

Y
ν,s

〉corr = 1

N2

∑
p1,p2

GW XY
p1,p2,tsse

ip1·�xκμeip2·�xνμ , (B13)

〈
ĉ†
μ,sĉμ,s̄Ĉ

†X
κ,s̄Ĉ

Y
ν,s

〉corr = 1

N2

∑
p1,p2

IXY
p1,p2,s̄se

ip1·�xκμeip2·�xνμ ,

(B14)〈
ĉ†
μ,sĉ

†
μ,s̄Ĉ

X
κ,s̄Ĉ

Y
ν,s

〉corr = 1

N2

∑
p1,p2

HXY
p1,p2,s̄se

ip1·�xκμeip2·�xνμ .

(B15)

With these definitions we find from Eq. (B11) [cf. Eq. (9)],

i∂t f XY,corr
k,s = (UY − U X ) f XY,corr

k,s

+ Jk

2

∑
W

(
f WY,corr
k,s − f XW,corr

k,s

)

+ SXY,1/Z
k,s + SXY,1/Z2

k,s , (B16)

with a source term determining the free quasiparticle
dynamics,

SXY,1/Z
k,s = Jk

2
[(−1)X − (−1)Y ]

(
D − 1

4

)
, (B17)

and a source term of order O(1/Z2) which contains the three-
point correlators,

SXY,1/Z2

k,s = 1

N

∑
q,W

Jq
[
GXWY

q,k,s̄ss − (
GYW X

q,k,s̄ss

)∗

+ (−1)X IWY
q,k,s̄s − (−1)Y

(
IW X
q,k,s̄s

)∗

+ (−1)X HWY
q,k,s̄s − (−1)Y

(
HW X

q,k,s̄s

)∗] + .... (B18)

We omitted in Eq. (B18) the terms which do not contribute to
the Boltzmann dynamics in leading order.

It is useful to employ a two-dimensional orthogonal trans-
formation which transforms from the X − Y basis to the
particle-hole basis. A general tensor transforms as

T ab...
p,q,... =

∑
X,Y,...

Oa
X (p)Ob

Y (q) · · · T XY...
p,q,.... (B19)

The orthogonal matrix Oa
X (k) satisfies the eigenvalue

equation,

Jk

2

∑
X

Oa
X (k) = (−Ea

k + UY
)
Oa

Y (k) for Y = 0, 1, (B20)

and has the explicit form,

Oa
X (k) =

(
cos(φk ) sin(φk )

− sin(φk ) cos(φk )

)
, (B21)

with

cos φk = 1√
2

⎛
⎝1 + U√

J2
k + U 2

⎞
⎠

1/2

(B22)
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and

sin φk = Jk√
2|Jk|

⎛
⎝1 − U√

J2
k + U 2

⎞
⎠

1/2

. (B23)

The excitation energies of quasiparticles and holes are [cf.
Eq. (11)]

E−
k = 1

2

(
U − Jk −

√
J2

k + U 2
)
, (B24)

E+
k = 1

2

(
U − Jk +

√
J2

k + U 2
)
. (B25)

With the transformation (B19) we can rewrite the equations
(B16) as [cf. Eq. (10)]

i∂t f ab,corr
k,s = (−Ea

k + Eb
k

)
f ab,corr
k,s + Sab,1/Z

k,s + Sab,1/Z2

k,s . (B26)

After the rotation into the particle-hole basis we can separate
the slow degrees of freedom (a = b) from the fast degrees of
freedom (a �= b) which are changing on a time scale ∼1/U .
Within the Markov approximation [cf. Eqs. (20) and (21)] we
find

f ab,corr
k,s = Sab,1/Z

k,s

Ea
k − Eb

k

+ O(1/Z2) for a �= b. (B27)

The slow dynamics is then determined by the evolution of the
diagonal elements,

i∂t f aa,corr
k,s = Saa,1/Z2

k,s , (B28)

since the 1/Z contributions of the source term in (B26) are
vanishing for a = b.

The correlation functions and the quasiparticle- and hole-
distribution functions [which contain also the on-site contri-
bution of order O(1)] are related by the algebraic relation,

f a
k,s = 1

2
+

(
1

2
− 2D

)∑
X

(−1)X Oa
X (k)Oa

X (k) + 2 f aa,corr
k,s .

(B29)

The time evolution for a negligible change of the double
occupancy, ∂tD ≈ 0, is then given by

i∂t f a
k,s = 2Saa,1/Z2

k,s = 2
∑
XY

Oa
X (k)Oa

Y (k)SXY,1/Z2

k,s . (B30)

The hierarchical method relies on a separation of expecta-
tion values into correlated and uncorrelated parts. Since we
want to express our final result in terms of quasiparticle-
and hole-distribution functions, we need the inversion of the
relation (B29). It can be checked that up to first order O(1/Z )
we have

f XY,corr
k,s = −1

4
δXY − δXY (−1)X

(
1

4
− D

)

+ 1

2

∑
a

Oa
X (k)Oa

Y (k) f a
k,s + O(1/Z2). (B31)

3. Boltzmann part of the three-point correlation functions

The second order of the hierarchical expansion [cf.
Eq. (4)] determines the evolution of the three-point correlation
functions (B13), (B15), and (B14). Since we are primarily

interested in correlations among four lattice sites, we shall
omit here the explicit form of the source terms which contain
only two- or three-point correlation functions. Some of the
equations below end therefore with “...”.

The three-point correlations (12) are the source terms for
particle-number correlations. For them we find

i∂t
〈
N̂W

μ,s̄Ĉ
†X
κ,sĈ

Y
ν,s

〉corr = (UY − U X )
〈
N̂W

μ,s̄Ĉ
†X
κ,sĈ

Y
ν,s

〉corr

+ 1

Z

∑
λ,V

Jκλ

〈
N̂X

κ,s̄

〉〈
N̂W

μ,s̄Ĉ
†V
λ,sĈ

Y
ν,s

〉corr

− 1

Z

∑
λ,V

Jνλ

〈
N̂Y

ν,s̄

〉〈
N̂W

μ,s̄Ĉ
†X
κ,sĈ

V
λ,s

〉corr

+ SG,W XY,1/Z2

μκν,s̄ss + SG,W XY,1/Z3

μκν,s̄ss , (B32)

with

SG,W XY,1/Z3

μκν,s̄ss

= (−1)W

Z

∑
λ,U,V

Jλμ

〈[
Ĉ†U

μ,s̄Ĉ
V
λ,s̄ − Ĉ†U

λ,s̄ ĈV
μ,s̄

]
Ĉ†X

κ,sĈ
Y
ν,s

〉corr + ....

(B33)

Taking the Fourier transform, switching to the particle-hole
basis and integrating within the Markov approximation gives
[cf. Eq. (15)]

GXab,1/Z3

p1,p2,s̄ss = i

i
(
Ea

p1
− Eb

p2

) − ε
SG,Xab,1/Z3

p1,p2,s̄ss + ...

= (−1)X 1

N

∑
q

∑
X,Y,U,V

i[Jq − Jp1+p2+q]

i
(
Ea

p1
− Eb

p2

) − ε

× Oa
X (p1)Ob

Y (p2)JUV XY
q,p1,p2,s̄s̄ss + ..., (B34)

where we introduced the Fourier components of the four-point
correlations [cf. Eq. (18)],

〈
Ĉ†U

λ,s̄ ĈV
μ,s̄Ĉ

†X
κ,sĈ

Y
ν,s

〉corr

= 1

N3

∑
q1,q2,q3

JUV XY
q1,q2,q3,s̄s̄sse

iq1·�xμλeiq2·�xκλeiq3·�xνλ . (B35)

The correlation functions (B14) are the source of spin-flip
correlations and obey the differential equation,

i∂t
〈
ĉ†
μ,sĉμ,s̄Ĉ

†X
κ,s̄Ĉ

Y
ν,s

〉corr

= (UY − U X )
〈
ĉ†
μ,sĉμ,s̄Ĉ

†X
κ,s̄Ĉ

Y
ν,s

〉corr

+ 1

Z

∑
λ,W

Jκλ

〈
N̂X

κ,s

〉〈
ĉ†
μ,sĉμ,s̄Ĉ

†W
λ,s̄ ĈY

ν,s

〉corr

− 1

Z

∑
λ,W

Jνλ

〈
N̂Y

ν,s̄

〉〈
ĉ†
μ,sĉμ,s̄Ĉ

†X
κ,s̄Ĉ

W
λ,s

〉corr

+ SI,XY,1/Z2

μκν,s̄s + SI,XY,1/Z3

μκν,s̄s , (B36)
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with

SI,XY,1/Z3

μκν,s̄s = 1

Z

∑
λ,U,V

Jλμ

〈[
Ĉ†U

λ,s ĈV
μ,s̄ − Ĉ†U

μ,sĈ
V
λ,s̄

]
Ĉ†X

κ,s̄Ĉ
Y
ν,s

〉corr + .... (B37)

Again, after Fourier transformation and switching to the particle-hole basis, we find within the Markov approximation [cf.
Eq. (16)],

Iab,1/Z3

p1,p2,s̄s = i

i
(
Ea

p1
− Eb

p2

) − ε
SI,ab,1/Z3

p1,p2,s̄s + ... = 1

N

∑
q

∑
U,V,X,Y

i[Jq − Jp1+p2+q]

i
(
Ea

p1
− Eb

p2

) − ε
Oa

X (p1)Ob
Y (p2)JUY XV

p2,p1,q,sss̄s̄ + .... (B38)

Finally, the correlation functions (B15) generate the doublon-holon correlations and evolve according to

i∂t
〈
ĉ†
μ,sĉ

†
μ,s̄Ĉ

X
κ,s̄Ĉ

Y
ν,s

〉corr = (U X + UY − U )
〈
ĉ†
μ,sĉ

†
μ,s̄Ĉ

X
κ,s̄Ĉ

Y
ν,s

〉corr − 1

Z

∑
λ,W

Jκλ

〈
N̂X

κ,s

〉〈
ĉ†
μ,sĉ

†
μ,s̄Ĉ

W
λ,s̄Ĉ

Y
ν,s

〉corr

− 1

Z

∑
λ,W

Jνλ

〈
N̂Y

ν,s̄

〉〈
ĉ†
μ,sĉ

†
μ,s̄Ĉ

X
κ,s̄Ĉ

W
λ,s

〉corr + SH,XY,1/Z2

μκν,s̄s + SH,XY,1/Z3

μκν,s̄s , (B39)

with

SH,XY,1/Z3

μκν,s̄s = 1

Z

∑
λ,U,V

Jλμ

〈[
Ĉ†U

λ,s Ĉ†V
μ,s̄ + Ĉ†U

μ,sĈ
†V
λ,s̄

]
ĈX

κ,s̄Ĉ
Y
ν,s

〉corr + ..., (B40)

which leads to [cf. Eq. (17)]

Hab,1/Z3

p1,p2,s̄s = i

i
(−Ea

p1
− Eb

p2
+ U

) − ε
SH,ab,1/Z3

p1,p2,s̄s + ... = 1

N

∑
q

∑
X,Y,U,V

i[Jq + Jp1+p2+q]

i
(−Ea

p1
− Eb

p2
+ U

) − ε
Oa

X (p1)Ob
Y (p2)JUYV X

p2,q,p1,sss̄s̄ + ....

(B41)

All these three-point correlators determine the evolution of the particle- and hole-distribution functions (B29). From (B30)
together with (B34), (B38), and (B41) we find

i∂t f d
k,s = 4

N2

∑
q,p

∑
X,Y

∑
a,b,c

Jq(−1)X Oa
W (k + q + p)Od

X (k)Oc
Y (q)

{
i
[−Ea

k+q+p − Eb
p + U

]
i
(−Ec

q − Ed
k + U

) − ε
Ob

W̄ (p)Jadbc
k,p,q,sss̄s̄

+ i
[
Ea

k+q+p − Eb
p

]
i
(
Ec

q − Ed
k

) − ε
Ob

W (p)
[
Jabcd

p,q,k,s̄s̄ss + Jadcb
k,q,p,sss̄s̄

]} − c.c. + .... (B42)

4. Three-point correlation functions up to 1/Z2

In the previous section we omitted the 1/Z2 contribution of the three-point correlation functions since we focused onto the
Boltzmann part which is of order 1/Z3. As will be shown below, the computation of the Fourier components Jabcd

q1,q2,q3,s̄s̄ss up to

order 1/Z3 requires the knowledge of GY Xab,1/Z2

p1,p1,s̄sss , Iab,1/Z2

p1,p2,s̄s, and Hab,1/Z2

p1,p2,s̄s .

a. Three-point correlators GY Xab,1/Z2

p1,p1,s̄sss

We begin with the differential equation for the three-point correlations,

i∂t
〈
N̂U

μ,s̄N̂
V
μ,sĈ

†X
κ,sĈ

Y
ν,s

〉corr = 1

Z

∑
λ,W

Jλκ

〈
N̂X

κ,s̄

〉〈
N̂U

μ,s̄N̂
V
μ,sĈ

†W
λ,s ĈY

ν,s

〉corr − 1

Z

∑
λ,W

Jλν

〈
N̂Y

ν,s̄

〉〈
N̂U

μ,s̄N̂
V
μ,sĈ

†X
κ,sĈ

W
λ,s

〉corr

+ (UY − U X )
〈
N̂U

μ,s̄N̂
V
μ,sĈ

†X
κ,sĈ

Y
ν,s

〉corr + SG,UV XY,1/Z2

μκν,s̄sss . (B43)

The source term reads

SG,UV XY,1/Z2

μκν,s̄sss = (−1)V

Z

∑
λ,W

Jλμ

[〈
Ĉ†U

μ,sĈ
Y
ν,s

〉corr〈
ĈW

λ,sĈ
†X
κ,s

〉corr + 〈
Ĉ†X

κ,sĈ
U
μ,s

〉corr〈
Ĉ†W

λ,s ĈY
ν,s

〉corr]

+ (−1)V

Z
Jκμ

∑
W

〈
Ĉ†U

μ,sĈ
Y
ν,s

〉corr〈
ĈW

κ,sĈ
†X
κ,s

〉 + (−1)V

Z
Jμν

∑
W

〈
Ĉ†X

κ,sĈ
U
μ,s

〉corr〈
Ĉ†W

ν,s ĈY
ν,s

〉

+ 1

Z

∑
λ,W

Jλκ

〈
N̂U

μ,s̄N̂
V
μ,sN̂

X
κ,s̄

〉corr〈
Ĉ†W

λ,s ĈY
ν,s

〉corr
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+ Jμκ

Z

〈
N̂X

κ,s̄

〉〈
N̂V

μ,sĈ
†U
μ,sĈ

Y
ν,s

〉corr − Jμκ

Z

∑
W

〈
N̂U

μ,s̄N̂
V
μ,s

〉〈
N̂X

κ,s̄

〉〈
Ĉ†W

μ,s ĈY
ν,s

〉corr

+ Jνα

Z

∑
W

[〈
N̂U

μ,s̄N̂
V
μ,sN̂

X
κ,s̄

〉corr〈
Ĉ†W

ν,s ĈY
ν,s

〉 + 〈
N̂U

μ,s̄N̂
V
μ,sĈ

†W
ν,s ĈY

ν,s

〉corr〈
N̂X

κ,s̄

〉]

− 1

Z

∑
λ,W

Jλν

〈
N̂U

μ,s̄N̂
V
μ,sN̂

Y
ν,s̄

〉corr〈
Ĉ†X

κ,sĈ
W
λ,s

〉corr

− Jμν

Z

〈
N̂Y

ν,s̄

〉〈
N̂V

μ,sĈ
†X
κ,sĈ

U
μ,s

〉corr + Jμν

Z

∑
W

〈
N̂U

μ,s̄N̂
V
μ,s

〉〈
N̂Y

ν,s̄

〉〈
Ĉ†X

κ,sĈ
W
μ,s

〉corr

− Jκν

Z

∑
W

[〈
N̂U

μ,s̄N̂
V
μ,sN̂

Y
ν,s̄

〉corr〈
Ĉ†X

κ,sĈ
W
κ,s

〉 + 〈
N̂U

μ,s̄N̂
V
μ,sĈ

†X
κ,sĈ

W
κ,s

〉corr〈
N̂Y

ν,s̄

〉]
. (B44)

We neglect the particle-number correlations which are of O(1/Z2) and transform the Fourier coefficients in the particle-hole
basis. We find the symmetric and antisymmetric combinations,

∑
Y

GY Xab,1/Z2

p1,p2,s̄sss = i

i
(
Ea

p1
− Eb

p2

) − ε

∑
Y

SG,Y Xab,1/Z2

p1,p2,s̄sss (B45)

and ∑
Y

(−1)Y GY Xab,1/Z2

p1,p2,s̄sss = i

i
(
Ea

p1
− Eb

p2

) − ε

∑
Y

(−1)Y SG,Y Xab,1/Z2

p1,p2,s̄sss , (B46)

with ∑
Y

SG,Y Xab,1/Z2

p1,p2,s̄sss = (−1)X

2

∑
Y

[−Eb
p2

+ UY
]
Oa

Y (p1)Ob
Y (p2)

[
f a
p1,s − 1

2
− (−1)Y

(
1

2
− 2D

)][
f b
p2,s − 1

2

]

− (−1)X

2

∑
Y

[−Ea
p1

+ UY
]
Oa

Y (p1)Ob
Y (p2)

[
f b
p2,s − 1

2
− (−1)Y

(
1

2
− 2D

)][
f a
p1,s − 1

2

]
, (B47)

and ∑
Y

(−1)Y SG,Y Xab,1/Z2

p1,p2,s̄sss = (−1)X

2

∑
Y

[−Eb
p2

+ UY
]
Oa

Y (p1)Ob
Y (p2)(−1)Y

[
f b
p2,s − 1

2
− (−1)Y

(
1

2
− 2D

)
− 1

2
(−1)X

]

×
[

f a
p1,s − 1

2
− (−1)Y

(
1

2
− 2D

)]

− (−1)X

2

∑
Y

[−Ea
p1

+ UY
]
Oa

Y (p1)Ob
Y (p2)(−1)Y

[
f a
p1,s − 1

2
− (−1)Y

(
1

2
− 2D

)
− 1

2
(−1)X

]

×
[

f b
p2,s − 1

2
− (−1)Y

(
1

2
− 2D

)]
. (B48)

b. Three-point correlators Iab,1/Z2

p1,p2,s̄s

The inhomogeneity of order 1/Z2 in (B36) reads

SI,XY,1/Z2

μκν,s̄s = 1

Z

∑
λ,U,V

Jλμ

[〈
Ĉ†U

μ,sĈ
Y
ν,s

〉corr〈
Ĉ†X

κ,s̄Ĉ
V
λ,s̄

〉corr − 〈
Ĉ†U

λ,s ĈY
ν,s

〉corr〈
Ĉ†X

κ,s̄Ĉ
V
μ,s̄

〉corr]

− Jκμ

Z

∑
U,V

〈
ĈV

κ,s̄Ĉ
†X
κ,s̄

〉〈
Ĉ†U

μ,sĈ
Y
ν,s

〉corr + Jμν

Z

∑
U,V

〈
Ĉ†U

ν,s ĈY
ν,s

〉〈
ĈV

μ,s̄Ĉ
†X
κ,s̄

〉corr

+ Jκμ

Z

∑
U

〈
N̂X

κ,s

〉〈
ĉ†
μ,sĉμ,s̄Ĉ

†U
μ,s̄Ĉ

Y
ν,s

〉corr − Jμν

Z

∑
U

〈
N̂Y

ν,s̄

〉〈
ĉ†
μ,sĉμ,s̄Ĉ

†X
κ,s̄Ĉ

U
μ,s

〉corr

+ (−1)X

Z

∑
λ

Jκλ〈ĉ†
μ,sĉμ,s̄ ĉ

†
κ,s̄ ĉκ,s〉corr

〈
ĉ†
λ,sĈ

Y
ν,s

〉corr − (−1)Y

Z

∑
λ

Jνλ〈ĉ†
μ,sĉμ,s̄ ĉ

†
ν,s̄ ĉν,s〉corr

〈
Ĉ†X

κ,s̄ ĉλ,s̄
〉corr
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+ Jκν

Z

[∑
U

〈
N̂X

κ,s

〉〈
ĉ†
μ,sĉμ,s̄Ĉ

†U
ν,s̄ ĈY

ν,s

〉corr + (−1)X
〈
ĉ†
ν,sĈ

Y
ν,s

〉〈ĉ†
μ,sĉμ,s̄ ĉ

†
κ,s̄ ĉκ,s〉corr

]

− Jκν

Z

[∑
U

〈
N̂Y

ν,s̄

〉〈
ĉ†
μ,sĉμ,s̄Ĉ

†X
κ,s̄Ĉ

U
κ,s

〉corr + (−1)Y
〈
Ĉ†X

κ,s̄ ĉκ,s̄
〉〈ĉ†

μ,sĉμ,s̄ ĉ
†
ν,s̄ ĉν,s〉corr

]
. (B49)

The last four lines of Eq. (B49) are of order 1/Z3 (the two-site correlations of the spin-flip operators are of order 1/Z2) and will
be neglected in the following. Within this approximation we arrive at

Iab,1/Z2

p1,p2,s̄s = i

i
(
Ea

p1
− Eb

p2

) − ε
SI,ab,1/Z2

p1,p2,s̄s , (B50)

with

SI,ab,1/Z2

p1,p2,s̄s = 1

2

∑
X

[−Ea
p1

+ U X
]
Oa

X (p1)Ob
X (p2)

[
f b
p2,s − 1

2
− (−1)X

(
1

2
− 2D

)][
f a
p1,s̄ − 1

2
+ (−1)X 1

2

]

− 1

2

∑
X

[−Eb
p2

+ U X
]
Oa

X (p1)Ob
X (p2)

[
f a
p1,s̄ − 1

2
− (−1)X

(
1

2
− 2D

)][
f b
p2,s − 1

2
+ (−1)X 1

2

]
. (B51)

c. Three-point correlators Hab,1/Z2

p1,p2,s̄s

The term of order 1/Z2 which was omitted in Eq. (B39) reads

SH,XY,1/Z2

μκν,s̄s = 1

Z

∑
λ,U,V

Jλμ

[〈
Ĉ†U

λ,s ĈY
ν,s

〉corr〈
Ĉ†V

μ,s̄Ĉ
X
κ,s̄

〉corr + 〈
Ĉ†U

λ,s̄ ĈX
κ,s̄

〉corr〈
Ĉ†V

μ,sĈ
Y
ν,s

〉corr]

+ Jκμ

Z

∑
U,V

〈
Ĉ†U

κ,s̄ Ĉ
X
κ,s̄

〉〈
Ĉ†V

μ,sĈ
Y
ν,s

〉corr + Jμν

Z

∑
U,V

〈
Ĉ†U

ν,s ĈY
ν,s

〉〈
Ĉ†V

μ,s̄Ĉ
X
κ,s̄

〉corr

− Jκμ

Z

∑
U

〈
N̂X

κ,s

〉〈
ĉ†
μ,sĉ

†
μ,s̄Ĉ

U
μ,s̄Ĉ

Y
ν,s

〉corr − Jμν

Z

∑
U

〈
N̂Y

ν,s̄

〉〈
ĉ†
μ,sĉ

†
μ,s̄Ĉ

X
κ,s̄Ĉ

U
μ,s

〉corr

+ (−1)X

Z

∑
λ

Jκλ〈ĉ†
μ,sĉ

†
μ,s̄ ĉκ,s̄ ĉκ,s〉corr〈ĉ†

λ,sĈ
Y
ν,s

〉corr + (−1)Y

Z

∑
λ

Jνλ〈ĉ†
μ,sĉ

†
μ,s̄ ĉν,s̄ ĉν,s〉corr〈ĉ†

λ,s̄Ĉ
X
κ,s̄

〉corr

− Jνκ

Z

[ ∑
U

〈
N̂X

κ,s

〉〈
ĉ†
μ,sĉ

†
μ,s̄Ĉ

U
ν,s̄Ĉ

Y
ν,s

〉corr − (−1)X
〈
ĉ†
ν,sĈ

Y
ν,s

〉〈ĉ†
μ,sĉ

†
μ,s̄ ĉκ,s̄ ĉκ,s〉corr

]

− Jνκ

Z

[ ∑
U

〈
N̂Y

ν,s̄

〉〈
ĉ†
μ,sĉ

†
μ,s̄Ĉ

X
κ,s̄Ĉ

U
κ,s

〉corr + (−1)Y
〈
ĈX

κ,s̄ ĉ
†
κ,s̄

〉〈ĉ†
μ,sĉ

†
μ,s̄ ĉν,s̄ ĉν,s〉corr

]
. (B52)

Again, the last four lines of Eq. (B52) are of order 1/Z3 and will be neglected in the following. After Fourier transform we obtain
within the Markov approximation,

Hab,1/Z2

p1,p2,s̄s = i

i
(−Ea

p1
− Eb

p2
+ U

) − ε
SH,ab,1/Z2

p1,p2,s̄s , (B53)

with

SH,ab,1/Z2

p1,p2,s̄s = 1

2

∑
X

[−Ea
p1

+ U X
]
Oa

X (p1)Ob
X̄ (p2)

[
f b
p2,s − 1

2
+ (−1)X

(
1

2
− 2D

)][
f a
p1,s̄ − 1

2
− (−1)X 1

2

]

+ 1

2

∑
m

[−Eb
p2

+ U X̄
]
Oa

X (p1)Ob
X̄ (p2)

[
f a
p1,s̄ − 1

2
− (−1)X

(
1

2
− 2D

)][
f b
p2,s − 1

2
+ (−1)X 1

2

]
. (B54)

5. Four-point correlation functions up to 1/Z3

The differential equation of the four-point correlators originates from the third order of the hierarchical expansion (5) and is
given by

i∂t
〈
Ĉ†X

λ,s̄Ĉ
Y
μ,s̄Ĉ

†U
κ,sĈ

V
ν,s

〉corr = i∂t
[〈

Ĉ†X
λ,s̄Ĉ

Y
μ,s̄Ĉ

†U
κ,sĈ

V
ν,s

〉corr − 〈
Ĉ†X

λ,s̄Ĉ
Y
μ,s̄

〉〈
Ĉ†U

κ,sĈ
V
ν,s

〉corr]
= 1

Z

∑
α,W

Jαλ

〈
N̂X

λ,s

〉〈
Ĉ†W

α,s̄ ĈY
μ,s̄Ĉ

†U
κ,sĈ

V
ν,s

〉corr − 1

Z

∑
α,W

Jαμ

〈
N̂Y

μ,s

〉〈
Ĉ†X

λ,s̄Ĉ
W
α,s̄Ĉ

†U
κ,sĈ

V
ν,s

〉corr
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+ 1

Z

∑
α,W

Jακ

〈
N̂U

κ,s̄

〉〈
Ĉ†X

λ,s̄Ĉ
Y
μ,s̄Ĉ

†W
α,s ĈV

ν,s

〉corr − 1

Z

∑
α,W

Jαν

〈
N̂V

μ,s̄

〉〈
Ĉ†X

λ,s̄Ĉ
W
μ,s̄Ĉ

†U
κ,sĈ

V
α,s

〉corr

+ (−U X + UY − UU + UV )
〈
Ĉ†X

λ,s̄Ĉ
Y
μ,s̄Ĉ

†U
κ,sĈ

V
ν,s

〉corr + SJ,XYUV,1/Z3

λμκν,s̄s̄ss , (B55)

with

SJ,XYUV,1/Z3

λμκν,s̄s̄ss = 1

Z

∑
α,W

Jαλ

[〈
N̂X

λ,sĈ
†U
κ,sĈ

V
ν,s

〉corr〈
Ĉ†W

α,s̄ ĈY
μ,s̄

〉corr − (−1)X
〈
ĉ†
λ,s̄ ĉλ,sĈ

†U
κ,sĈ

Y
μ,s̄

〉corr〈
Ĉ†W

α,s ĈV
ν,s

〉corr

− (−1)X
〈
ĉ†
λ,sĉ

†
λ,s̄Ĉ

Y
μ,s̄Ĉ

V
ν,s

〉corr〈
Ĉ†U

κ,sĈ
W
α,s

〉corr]
− 1

Z

∑
α,W

Jαμ

[〈
N̂Y

μ,sĈ
†U
κ,sĈ

V
ν,s

〉corr〈
Ĉ†X

λ,s̄Ĉ
W
α,s̄

〉corr − (−1)Y
〈
ĉ†
μ,sĉμ,s̄Ĉ

†X
λ,s̄Ĉ

W
ν,s

〉corr〈
Ĉ†U

κ,sĈ
W
α,s

〉corr

− (−1)Y
〈
ĉμ,sĉμ,s̄Ĉ

†X
λ,s̄Ĉ

†U
κ,s

〉corr〈
Ĉ†W

α,s ĈV
ν,s

〉corr]
+ 1

Z

∑
α,W

Jακ

[〈
N̂U

κ,s̄Ĉ
†X
λ,s̄Ĉ

Y
μ,s̄

〉corr〈
Ĉ†W

α,s ĈV
ν,s

〉corr − (−1)U
〈
ĉ†
κ,sĉκ,s̄Ĉ

†X
λ,s̄Ĉ

V
ν,s

〉corr〈
Ĉ†W

α,s̄ ĈY
μ,s̄

〉corr

− (−1)U
〈
ĉ†
κ,s̄ ĉ

†
κ,sĈ

V
ν,sĈ

Y
μ,s̄

〉corr〈
Ĉ†X

λ,s̄Ĉ
W
α,s̄

〉corr]
− 1

Z

∑
α,W

Jαν

[〈
N̂V

ν,s̄Ĉ
†X
λ,s̄Ĉ

Y
μ,s̄

〉corr〈
Ĉ†U

κ,sĈ
W
α,s

〉corr − (−1)V
〈
ĉ†
ν,s̄ ĉν,sĈ

†U
κ,sĈ

Y
μ,s̄

〉corr〈
Ĉ†X

λ,s̄Ĉ
W
α,s̄

〉corr

− (−1)V
〈
ĉν,sĉν,s̄Ĉ

†X
λ,s̄Ĉ

†U
κ,s

〉corr〈
Ĉ†W

α,s ĈY
μ,s

〉corr]
+ Jκλ

Z

∑
W

[−〈
N̂X

λ,s

〉〈
Ĉ†W

κ,s̄ Ĉ†U
κ,sĈ

Y
μ,s̄Ĉ

V
ν,s

〉corr + (−1)X
〈
ĈW

κ,sĈ
†U
κ,s

〉〈
ĉ†
λ,sĉ

†
λ,s̄Ĉ

Y
μ,s̄Ĉ

V
ν,s

〉corr

− 〈
N̂X

λ,s

〉〈
Ĉ†W

κ,s̄ ĈY
μ,s̄

〉corr〈
Ĉ†U

κ,sĈ
V
ν,s

〉corr − 〈
N̂U

κ,s̄

〉〈
Ĉ†X

λ,s̄Ĉ
†W
λ,s ĈY

μ,s̄Ĉ
V
ν,s

〉corr

− 〈
N̂U

κ,s̄

〉〈
Ĉ†X

λ,s̄Ĉ
Y
μ,s̄

〉corr〈
Ĉ†W

λ,s ĈV
λ,s

〉corr − (−1)U
〈
Ĉ†X

λ,s̄Ĉ
W
λ,s̄

〉〈
ĉ†
κ,sĉ

†
κ,s̄Ĉ

Y
μ,s̄Ĉ

V
ν,s

〉corr]
+ Jνλ

Z

∑
W

[−〈
N̂X

λ,s

〉〈
Ĉ†W

ν,s̄ Ĉ†V
ν,s ĈU

κ,sĈ
Y
μ,s̄

〉corr − (−1)X
〈
Ĉ†W

ν,s ĈV
ν,s

〉〈
ĉ†
λ,s̄ ĉλ,sĈ

†U
κ,sĈ

Y
μ,s̄

〉corr

− 〈
N̂X

λ,s

〉〈
Ĉ†W

ν,s̄ ĈY
μ,s̄

〉corr〈
Ĉ†U

κ,sĈ
V
ν,s

〉corr + 〈
N̂V

ν,s̄

〉〈
Ĉ†X

λ,s̄Ĉ
W
λ,sĈ

†U
κ,sĈ

Y
μ,s̄

〉corr

+ 〈
N̂V

ν,s̄

〉〈
Ĉ†U

κ,sĈ
W
λ,s

〉corr〈
Ĉ†X

λ,sĈ
Y
μ,s̄

〉corr − (−1)V
〈
Ĉ†X

λ,s̄Ĉ
W
λ,s̄

〉〈
ĉ†
ν,s̄ ĉν,sĈ

U
κ,sĈ

Y
μ,s̄

〉corr]
+ Jκμ

Z

∑
W

[−〈
N̂Y

μ,s

〉〈
ĈW

κ,s̄Ĉ
†U
κ,sĈ

†X
λ,s̄Ĉ

V
ν,s

〉corr + 〈
N̂Y

μ,s

〉〈
Ĉ†X

λ,s̄Ĉ
W
κ,s̄

〉corr〈
Ĉ†U

κ,sĈ
V
ν,s

〉corr

− (−1)Y
〈
ĉ†
μ,sĉμ,s̄Ĉ

†X
λ,s̄Ĉ

V
ν,s

〉corr〈
ĈW

κ,sĈ
†U
κ,s

〉 + 〈
N̂U

κ,s̄

〉〈
ĈY

μ,s̄Ĉ
†W
μ,s Ĉ†X

λ,s̄Ĉ
V
ν,s

〉corr

− 〈
N̂U

κ,s̄

〉〈
Ĉ†W

μ,s ĈV
ν,s

〉corr〈
Ĉ†X

λ,s̄Ĉ
Y
μ,s̄

〉corr + (−1)U
〈
ĈY

μ,s̄Ĉ
†W
μ,s̄

〉〈
ĉ†
κ,sĉκ,s̄Ĉ

†X
λ,s̄Ĉ

V
ν,s

〉corr]
+ Jμν

Z

∑
W

[−〈
N̂Y

μ,s

〉〈
ĈW

ν,s̄Ĉ
V
ν,sĈ

†U
κ,sĈ

†X
λ,s̄

〉corr + 〈
N̂Y

μ,s

〉〈
Ĉ†X

λ,s̄Ĉ
W
ν,s̄

〉corr〈
Ĉ†U

κ,sĈ
V
ν,s

〉corr

+ (−1)Y
〈
ĉμ,sĉμ,s̄Ĉ

†X
λ,s̄Ĉ

†U
κ,s

〉corr〈
Ĉ†W

ν,s ĈV
ν,s

〉 − 〈
N̂V

ν,s̄

〉〈
ĈY

μ,s̄Ĉ
W
μ,sĈ

†U
κ,sĈ

†X
λ,s̄

〉corr

+ 〈
N̂V

ν,s̄

〉〈
Ĉ†X

λ,s̄Ĉ
Y
μ,s̄

〉corr〈
Ĉ†U

κ,sĈ
W
μ,s

〉corr − (−1)V
〈
ĈY

μ,s̄Ĉ
†W
μ,s̄

〉〈
ĉν,s̄ ĉν,sĈ

†U
κ,sĈ

†X
λ,s̄

〉corr]
+ Jμλ

Z

∑
W

[〈
Ĉ†W

μ,s̄ ĈY
μ,s̄

〉corr〈
N̂X

λ,sĈ
†U
κ,sĈ

V
ν,s

〉corr + 〈
N̂X

λ,s

〉〈
Ĉ†W

μ,s̄ ĈY
μ,s̄Ĉ

†U
κ,sĈ

V
ν,s

〉corr

− 〈
N̂Y

μ,s

〉〈
Ĉ†X

λ,s̄Ĉ
W
λ,s̄Ĉ

†U
κ,sĈ

V
ν,s

〉corr − 〈
Ĉ†X

λ,s̄Ĉ
W
λ,s̄

〉corr〈
N̂Y

μ,sĈ
†U
κ,sĈ

V
ν,s

〉corr]
+ Jκν

Z

∑
W

[〈
Ĉ†W

ν,s ĈV
ν,s

〉corr〈
N̂U

κ,s̄Ĉ
†X
λ,s̄Ĉ

Y
μ,s̄

〉corr + 〈
N̂U

κ,s̄

〉〈
Ĉ†W

ν,s ĈV
ν,sĈ

†X
λ,s̄Ĉ

Y
μ,s̄

〉corr

− 〈
N̂V

ν,s̄

〉〈
Ĉ†U

κ,sĈ
W
κ,sĈ

†X
λ,s̄Ĉ

Y
μ,s̄

〉corr − 〈
Ĉ†U

κ,sĈ
W
κ,s

〉corr〈
N̂V

ν,s̄Ĉ
†Y
λ,s̄Ĉ

Y
μ,s̄

〉corr]
. (B56)
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At half filling we find after the Fourier transform in the Markov approximation,

Jabcd,1/Z3

−p1−p2−p3,p1,p2,p3,s̄s̄ss = iSJ,abcd,1/Z3

−p1−p2−p3,p1,p2,p3,s̄s̄ss

i
(
Ea

p1+p2+p3
− Eb

p1
+ Ec

p2
− Ed

p3

) − ε
, (B57)

with the source term,

SJ,abcd,1/Z3

−p1−p2−p3,p1,p2,p3,s̄s̄ss = − i
∑
X,Y

Oa
X (p1 + p2 + p3)Ob

X (p1)SG,Y Xcd,1/Z2

p2,p3,s̄sss

i
(
Ec

p2
− Ed

p3

) − ε

{
(−1)Y

2

[
Eb

p1
− Ea

p1+p2+p3

]

+
[

f a
p1+p2+p3,s̄ − 1

2

][−Ea
p1+p2+p3

+ U X

[
f b
p1,s̄ − 1

2

][−Eb
p1

+ U X
]}

− i
∑
X,Y

Oc
X (p2)Od

X (p3)SG,Y Xab,1/Z2

−p1−p2−p3,p1,ss̄s̄s̄

i
(
Ea

p1+p2+p3
− Eb

p1

) − ε

{
(−1)Y

2

(
Ed

p3
− Ec

p2

)

+
[

f c
p2,s − 1

2

][−Ec
p2

+ U X
] −

[
f d
p3,s − 1

2

][−Ed
p3

+ U X
]}

− i
∑

X

Ob
X (p1)Oc

X (p2)SI,ad,1/Z2

−p1−p2−p3,p3,s̄s

i
(
Ea

p1+p2+p3
− Ed

p3

) − ε

{[
(−1)X f b

p1,s̄ − (−1)X

2
− 1

2

][−Eb
p1

+ U X
]

−
[

(−1)X f c
p2,s − (−1)X

2
− 1

2

][−Ec
p2

+ U X
]}

− i
∑

X

Oa
X (p1 + p2 + p3)Od

X (p3)SI,cb,1/Z2

p2,p1,ss̄

i
(
Ec

p2
− Eb

p1

) − ε

{[
(−1)X f d

p3,s − (−1)X

2
− 1

2

][−Ed
p3

+ U X
]

−
[

(−1)X f a
p1+p2+p3,s̄ − (−1)X

2
− 1

2

][−Ea
p1+p2+p3

+ U X
]}

− i
∑

X

Oa
X (p1 + p2 + p3)Oc

X (p2)SH,bd,1/Z2

p1,p3,s̄s

i
(−Eb

p1
− Ed

p3
+ U

) − ε

{[
(−1)X f c

p2,s − (−1)X

2
− 1

2

][−Ec
p2

+ U X
]

+
[

(−1)X f a
p1+p2+p3,s̄ − (−1)X

2
− 1

2

][−Ea
p1+p2+p3

+ U X
]}

− i
∑

X

Ob
X (p1)Od

X (p3)SH,ca,1/Z2

p2,p1+p2+p3ss̄

i
(
Ec

p2
+ Ea

p1+p2+p3
− U

) − ε

{[
(−1)X f d

p3,s − (−1)X

2
− 1

2

][−Ed
p3

+ U X
]

+ 2

[
(−1)X f b

p1,s̄ − (−1)X

2
− 1

2

][−Eb
p1

+ U X
]}

+
∑
X,Y

Oa
X (p1 + p2 + p3)Ob

X (p1)Oc
Y (p2)Od

Y (p3)

{
f c
p2,s + f d

p3,s − 1 − (−1)Y

(
1

2
− 2D

)}

×
{(−Eb

p1
+ U X

)(
f a
p1+p2+p3,s̄ − 1

2
− (−1)X

(
1

2
− 2D

))

− (−Ea
p1+p2+p3

+ U X
)(

f b
p1,s̄ − 1

2
− (−1)X

(
1

2
− 2D

))}

+
∑
X,Y

Oa
Y (p1 + p2 + p3)Ob

Y (p1)Oc
X (p2)Od

X (p3)

{
f a
p1+p2+p3,s̄ + f b

p1,s̄ − 1 − (−1)X

(
1

2
− 2D

)}

×
{(−Ed

p3
+ U X

)(
f c
p2,s − 1

2
− (−1)X

(
1

2
− 2D

))

− (−Ec
p2

+ U X
)(

f d
p3,s − 1

2
− (−1)X

(
1

2
− 2D

))}
. (B58)
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6. Boltzmann equations

From Eqs. (B42) and (B58) we find after some tedious algebra the time evolution of the distribution functions f d
k,s [cf.

Eq. (22)],

∂t f d
k,s = 8π

N2

∑
a,b,c

∑
q,p

∑
X,Y,V

(−1)X δ
(
Ea

k+q+p − Eb
p + Ec

q − Ed
k

)
× {

Jk+q+pOa
Y (k + q + p)Ob

V (p)Oc
V (q)Od

X (k) − JpOa
V (k + q + p)Ob

Y (p)Oc
V (q)Od

X (k)

+ JqOa
V (k + q + p)Ob

V (p)Oc
Y (q)Od

X (k)
}
Aadcb

−k−q−p,k,q,p,sss̄s̄, (B59)

with

Aabcd
−k−q−p,p,q,k,s̄s̄ss = −

∑
X,Y,V

(−1)X

16

[
Jk+q+pOa

Y (k + q + p)
{
Ob

X (p)Oc
V (q)Od

V (k) − Ob
Z (p)Oc

X (q)Od
V̄ (k) + Ob

V (p)Oc
V (q)Od

X (k)
}

+ JpOb
Y (p)

{
Oa

X (k + q + p)Oc
V (q)Od

V (k) − Oa
V (k + q + p)Oc

V̄ (q)Od
X (k) + Oa

V (k + q + p)Oc
X (q)Od

V (k)
}

+ JqOc
Y (q)

{
Oa

V (k + q + p)Ob
V (p)Od

X (k) − Oa
X (k + q + p)Ob

V (p)Od
V̄ (k) + Oa

V (k + q + p)Ob
X (p)Od

V (k)
}

+ JkOd
Y (k)

{
Oa

V (k + q + p)Ob
V (p)Oc

X (q) − Oa
V (k + q + p)Ob

X (p)Oc
V̄ (q) + Oa

X (k + q + p)Ob
V (p)Oc

V (q)
}]

× [
f b
p,s̄ f d

k,s

(
1 − f a

k+q+p,s̄

)(
1 − f c

q,s

) − f a
k+q+p,s̄ f c

q,s

(
1 − f b

p,s̄

)(
1 − f d

k,s

)]
. (B60)

The time evolution of the double occupancy is determined by (B10). Within the Markov approximation, its time evolution reads
[cf. Eq. (27)]

∂tD = −4π

N3

∑
s

∑
a,b,c,d

∑
k,q,p

Jk√
J2

k + U 2

∑
X,Y,V

(−1)X δ
(
Ea

k+q+p − Eb
p + Ec

q − Ed
k

)

× {
Jk+q+pOa

Y (k + q + p)Ob
V (p)Oc

V (q)Od̄
X (k) − JpOa

V (k + q + p)Ob
Y (p)Oc

V̄ (q)Od̄
X (k)

+ JqOa
V (k + q + p)Ob

Z (p)Oc
Y (q)Od̄

X (k)
}
Aadcb

−k−q−p,k,q,p,sss̄s̄, (B61)

which is of order O(1/Z4) and becomes negligible for J � U .

7. Weak interactions

In Eqs. (B24) and (B21), the rotation matrix was chosen such that the particle-hole excitation energy is always positive,
E+

k − E−
k > 0. This choice is useful in the limit of strong interactions (see below). However, in the limit of weak interactions,

U/J � 1, the Hubbard bands are overlapping and the system is in a metallic state where the notion of quasiparticles and
holes loses its meaning. In the weak-coupling limit, the calculation is simplified considerably if the rotation matrix orders the
eigenvalues such that

E−
k ≈ Jk + U

2
, (B62)

E+
k ≈ U

2
. (B63)

Note that we never used the explicit form of the rotation matrix in the above derivation of the Boltzmann equation, therefore we
have some freedom as long as the eigenvalue equation (B20) is satisfied. Equation (B62) corresponds to the choice,

Oa
X (k) ≈ 1√

2

(
1 + U

2Jk
1 − U

2Jk

−1 + U
2Jk

1 + U
2Jk

)
. (B64)

For U/J � 1, the dominating channel is a = b = c = d = −. The remaining matrix elements determine the dynamics of slower
collisions with energies ∼U 2/J or ∼U . Using the energy conserving delta distribution for the dominating channel, we find from
(B60)

A−−−−
−k−q−p,p,q,k,s̄s̄ss = −U

4
[ f −

p,s̄ f −
k,s(1 − f −

k+q+p,s̄)(1 − f −
q,s) − f −

k+q+p,s̄ f −
q,s(1 − f −

p,s̄)(1 − f −
k,s)]. (B65)

The evolution equation (B59) simplifies to

∂t f −
k,a = −2πU 2

N2

∑
q,p

δ(Jk+q+p − Jp + Jq − Jk )

× [ f −
p,s̄ f −

k,s(1 − f −
k+q+p,s̄)(1 − f −

q,s) − f −
k+q+p,s̄ f −

q,s(1 − f −
p,s̄)(1 − f −

k,s)]. (B66)
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In this limit the distribution function reads

f −
k,s = 1

2 + f 00,corr
k,s + f 10,corr

k,s + f 01,corr
k,s + f 11,corr

k,s = nk,s, (B67)

and we find

∂t nk,s = −2πU 2

N2

∑
q,p

δ(Jk+q+p − Jp + Jq − Jk )[np,s̄nk,s(1 − nk+q+p,s̄)(1 − nq,s) − nk+q+p,s̄nq,s(1 − np,s̄)(1 − nk,s)], (B68)

which is the standard expression of the Boltzmann kinetic equations in the weak-coupling limit. It coincides with the perturbative
result (A5) for V ss

q = 0 and V ss̄
q = U .

8. Strong interactions

In the limit of strong interactions J/U � 1, we choose the rotation matrix Oa
X (k) such that E+

k − E−
k > 0. From (B21) we

find then Oa
X (k) ≈ δa

X . The four-point correlator (B60) simplifies to

Aabcd
−k−q−p,p,q,k,s̄s̄ss = 1

16
{Jk+q+p[−(−1)bδcd + (−1)cδbd̄ − (−1)dδbc] + Jp[−(−1)aδcd − (−1)cδad + (−1)dδac̄]

+ Jq[(−1)aδbd̄ − (−1)bδad − (−1)dδab] + Jk[−(−1)aδbc + (−1)bδac̄ − (−1)cδab]}
× [

f b
p,s̄ f d

k,s

(
1 − f a

k+q+p,s̄

)(
1 − f c

q,s

) − f a
k+q+p,s̄ f c

q,s

(
1 − f b

p,s̄

)(
1 − f d

k,s

)]
. (B69)

From (B59) follows then the evolution equation of the hole modes,

∂t f −
k,s = −2π

N2

∑
q,p

δ(Jk+q+p − Jp + Jq − Jk )

× {(Jq + Jk+q+p)2[ f −
k,s f −

p,s̄(1 − f −
k+q+p,s)(1 − f −

q,s̄) − f −
k+q+p,s f −

q,s̄(1 − f −
k,s)(1 − f −

p,s̄)]

+ (Jq − Jp)2[ f −
k,s f +

p,s̄(1 − f +
k+q+p,s)(1 − f −

q,s̄) − f +
k+q+p,s f −

q,s̄(1 − f −
k,s)(1 − f +

p,s̄)]

+ (Jk+q+p − Jp)2[ f −
k,s f +

p,s̄(1 − f −
k+q+p,s)(1 − f +

q,s̄) − f −
k+q+p,s f +

q,s̄(1 − f −
k,s)(1 − f +

p,s̄)]}, (B70)

and for the particle modes [cf. Eq. (23)],

∂t f +
k,s = −2π

N2

∑
q,p

δ(Jk+q+p − Jp + Jq − Jk )

× {(Jq + Jk+q+p)2[ f +
k,s f +

p,s̄(1 − f +
k+q+p,s)(1 − f +

q,s̄) − f +
k+q+p,s f +

q,s̄(1 − f +
k,s)(1 − f +

p,s̄)]

+ (Jq − Jp)2[ f +
k,s f −

p,s̄(1 − f −
k+q+p,s)(1 − f +

q,s̄) − f −
k+q+p,s f +

q,s̄(1 − f +
k,s)(1 − f −

p,s̄)]

+ (Jk+q+p − Jp)2[ f +
k,s f −

p,s̄(1 − f +
k+q+p,s)(1 − f −

q,s̄) − f +
k+q+p,s f −

q,s̄(1 − f +
k,s)(1 − f −

p,s̄)]}. (B71)

Note that in the strong-coupling limit, the quasiparticle and hole distribution functions are related to the correlation functions via

f −
k,s = 1 + 2 f 00,corr

k,s , (B72)

f +
k,s = 2 f 11,corr

k,s . (B73)
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